
Why you shouldn't write
cryptographic algorithms yourself

Experience why writing your own crypto is harder than it
seems at frst.

Simo Sorce
Sr. Principal Sw. Engineer – RHEL Crypto Team
2019-01-26

2

Everyone tells you that you shouldn’t
write your own crypto, but they don’t

tell you why.

4

Instead let’s see what it takes to
write software to handle a

cryptographic function like RSA*

*I chose RSA only because I had to deal with it recently, could have used any
Symmetric or asymmetric cryptographic primitive

6

Encrypted message

Clear text Public exponent

C = Me mod N

7

Encrypted message

Clear text

Private exponent

M = Cd mod N

9

No really, no tricks!
RSA is really simple

11

Let’s look at those “useless” details
the cryptographers talk about from

time to time!

12

Attacks based on poor practices
Easy stuff :-)

These attacks are based on the math, not the implementation.

● Common Modulus - (Simmons)
● Yeah, please never reuse p, q

● Low Private Exponent (d) - (Wiener)
● Breaks cryptosystem – hey but decryption is real fast!

● Low Public Exponent (e) - (Coppersmith, Hastad, Franklin-Reiter)
● Not a total break, but still please use e > 216 -1
● Also use randomized padding

● … for more details, search for:
● Twenty Years of Attacks on the RSA Cryptosystem (Dan Boneh)

WE LOOKED AT THE MATH!!!

14

Basic tools needed to implement RSA
Usually beyond what standard languages provide

● Infnite precision math library
● You really need to deal with BIG numbers, as in several thousands bits large

numbers, so they won’t ft in your processor registers as normal integers, or
long integers or even long long integers, and you can’t use foats.

● Fast, prime number generation tools to fnd good large primes
● For key generation

● A good CSPRNG
● Also for key generation and other things

15

RSA decryption using GMP*

Simplest code

/* compute root (raise to private exponent) */
mpz_powm(message, ciphertext, key->d, key->n);
/* compute root (raise to private exponent) */
mpz_powm(message, ciphertext, key->d, key->n);

This is a bit slow ...

1

*GNU Multiple Precision Arithmetic Library

17

Faster RSA decryption
A bit faster using CRT

/* compute root (derived from CRT) */
mpz_fdiv_r(m_mod_p, C, key->p);
mpz_powm(Mp, m_mod_p, key->a, key->p);

mpz_fdiv_r(m_mod_q, ciphertext, key->q);
mpz_powm(Mq, m_mod_q, key->b, key->q);

mpz_sub(tmp1, Mp, Mq);
mpz_mul(tmp2, tmp1, key->c);
mpz_fdiv_r(Xp, tmp2, key->p);

mpz_mul(tmp1, key->q, Xp);
mpz_add(M, tmp1, Mq);

/* compute root (derived from CRT) */
mpz_fdiv_r(m_mod_p, C, key->p);
mpz_powm(Mp, m_mod_p, key->a, key->p);

mpz_fdiv_r(m_mod_q, ciphertext, key->q);
mpz_powm(Mq, m_mod_q, key->b, key->q);

mpz_sub(tmp1, Mp, Mq);
mpz_mul(tmp2, tmp1, key->c);
mpz_fdiv_r(Xp, tmp2, key->p);

mpz_mul(tmp1, key->q, Xp);
mpz_add(M, tmp1, Mq);

dp = d mod (P – 1) dq = d mod (Q - 1)
Mp = Cdp mod P Mq = Cdq mod Q

Find: M = Mp mod P == Mq mod Q
M = Cd mod N

x10

18

Attacks on implementations
Where *everyone* gets it wrong the frst 42 times!

These attacks use math to defeat implementation issues.
They all need an Oracle, conveniently any TLS server is one.

● Timing attacks (Kocher)
● Use blinding to defeat this (Rivest)

● Random Faults (Boneh, DeMillo, and Lipton)
● Check signature before sending out

● Bleichenbacher's Attack on PKCS 1 (Bleichenbacher)
● In TLS defeated by using a random session key instead of returning error

19

Blinding
Prevents using the server as a signing Oracle

random_func(R); /* generate random R */
mpz_invert(Ri, R, key->n); /* ..and its inverse Ri */

/* blinding */
mpz_powm(tmp1, R, key->e, key->n);
mpz_mul(tmp2, tmp1, C);
mpz_fdiv_r(Cr, tmp2, key->n);

rsa_compute_root(Mr, Cr);

/* unblinding */
mpz_mul(tmp1, Mr, Ri);
mpz_fdiv_r(M, tmp1, key->n);

random_func(R); /* generate random R */
mpz_invert(Ri, R, key->n); /* ..and its inverse Ri */

/* blinding */
mpz_powm(tmp1, R, key->e, key->n);
mpz_mul(tmp2, tmp1, C);
mpz_fdiv_r(Cr, tmp2, key->n);

rsa_compute_root(Mr, Cr);

/* unblinding */
mpz_mul(tmp1, Mr, Ri);
mpz_fdiv_r(M, tmp1, key->n);

Cr = C * re mod N
M * r = Crd mod N
M = Crd / r mod N

M = Cd mod N

x2

20

Checking
Prevents sending faulty signatures

/* blinding */
rsa_blind(Cr, Ri, C);

rsa_compute_root(Mr, Cr);

/* check */
mpz_powm(Cr2, Mr, key->e, key→n);
if(Cr2 != Cr) goto error;

/* unblinding */
rsa_unblind(M, Ri, Mr);

/* blinding */
rsa_blind(Cr, Ri, C);

rsa_compute_root(Mr, Cr);

/* check */
mpz_powm(Cr2, Mr, key->e, key→n);
if(Cr2 != Cr) goto error;

/* unblinding */
rsa_unblind(M, Ri, Mr);

C = Me mod NM = Cd mod N +

+2

21

One defense from Bleichenbacher

if (error) {
random_func(M);
return M;

}

if (error) {
random_func(M);
return M;

}

+2

24

Attacks based on CPU architecture
Here is were people give up! :-)

These attacks use timing and caching issues to retrieve your keys.
They all need a LOCAL Oracle, conveniently any TLS server on a SHARED
host is one.

● The 9 Lives of Bleichenbacher’s CAT: New Cache ATtacks on TLS Implementations
(Ronen, Gillham, Genkin, Shamir, Wong, Yarom)
● Attacks the RSA implementation by timing how much time computations take
● Attacks the RSA implementation by checking which memory area is accessed

and when via CPU cache inspection and manipulation
● Funny note: OpenSSL did not raise a CVE because their threat model does not

involve protecting from “local” attacks …
● Do you run Virtual Machines or Containers ?

25

Attacks based on CPU architecture
Here is were people give up! :-)

These attacks are use timing and caching issues to retrieve your keys.
They all need a LOCAL Oracle, conveniently any TLS server on a SHARED
host is one.

● The 9 Lives of Bleichenbacher’s CAT: New Cache ATtacks on TLS Implementations
(Ronen, Gillham, Genkin, Shamir, Wong, Yarom)
● Attacks the RSA implementation by timing how much time computations take
● Attacks the RSA implementation by checking which memory area is accessed

and when via CPU cache inspection and manipulation
● Funny note: OpenSSL did not raise a CVE because their threat model does not

involve protecting from “local” attacks …
● Do you run Virtual Machines or Containers ?

26

Defeating Cache/Timing attacks
Or at least we tried to …

Luckily some of this work was already done to solve other timing issues
● GMP needs “security” functions that compute in constant time and constant space

● mpz_powm mpn_sec_powm→

● …
● Change rsa_compute_root() to be side-channel silent

● Remove all input dependent conditional operations
● 1 function of about 10 lines 8 functions for a total of about 100 lines→

● Obviously slower, also a lot more complicated
● Change pkcs1 (de)padding function to be side-channel silent

● 1 function of about 20 lines 2 functions for a total of about 40 lines →

● All considered about 40 commits upstream

27

Example

/* fill destination buffer fully regardless of outcome. Copies the message
 * in a memory access independent way. The destination message buffer will
 * be clobbered past the message length. */
shift = padded_message_length - buflen;
cnd_memcpy(ok, message, padded_message + shift, buflen);
offset -= shift;
/* In this loop, the bits of the 'offset' variable are used as shifting
 * conditions, starting from the least significant bit. The end result is
 * that the buffer is shifted left exactly 'offset' bytes. */
for (shift = 1; shift < buflen; shift <<= 1, offset >>= 1)
 {
 /* 'ok' is both a least significant bit mask and a condition */
 cnd_memcpy(offset & ok, message, message + shift, buflen - shift);
 }

/* update length only if we succeeded, otherwise leave unchanged */
*length = (msglen & (-(size_t) ok)) + (*length & ((size_t) ok - 1));

/* fill destination buffer fully regardless of outcome. Copies the message
 * in a memory access independent way. The destination message buffer will
 * be clobbered past the message length. */
shift = padded_message_length - buflen;
cnd_memcpy(ok, message, padded_message + shift, buflen);
offset -= shift;
/* In this loop, the bits of the 'offset' variable are used as shifting
 * conditions, starting from the least significant bit. The end result is
 * that the buffer is shifted left exactly 'offset' bytes. */
for (shift = 1; shift < buflen; shift <<= 1, offset >>= 1)
 {
 /* 'ok' is both a least significant bit mask and a condition */
 cnd_memcpy(offset & ok, message, message + shift, buflen - shift);
 }

/* update length only if we succeeded, otherwise leave unchanged */
*length = (msglen & (-(size_t) ok)) + (*length & ((size_t) ok - 1));

memcpy(message, terminator + 1, message_length);
*length = message_length;
memcpy(message, terminator + 1, message_length);
*length = message_length;

x3 - x5

28

From naive to reasonably secure
implementation

Two orders of magnitude more code
(… and bugs ?)

29

FAST SECURE SIMPLE

Chose Two One
Compromises are necessary

facebook.com/redhatinc

twitter.com/RedHat

plus.google.com/+RedHat

youtube.com/user/RedHatVideos

linkedin.com/company/red-hat

THANK YOU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

