
How to build an Identity Management
System on Linux

Simo Sorce
Principal Software Engineer

Red Hat, Inc.

What is an Identity Management
System and why should I care ?

● In a nutshell: an IdM system is a set of services and rules to
manage the users of an organization.

● It includes information about individuals, computers, groups, roles,
authentication and authorization rules that apply to the set of users
and devices managed by the system.

● If you need to manage more than a handful of machines you do not
want to manually configure all these functions on each one, instead
you use an IdM system generally hosted on a centralized server.

Identities

● When you encounter the word Identity usually
you think about a person, or a user.

● But computers and even single programs often
need their own identity in order to be authorized
to perform operations over a network.

● Identities are also often managed in groups to
apply authorization decisions to multiple similar
objects in a simpler/consistent way.

What do we need to manage

● At the core:
● Users' life-cycle

– Creation, deletion, and other status changes
– Relations (groups, roles)
– Policies (passwords, privileges)

● Computers' life-cycle
– Enrollment, retirement
– Creation/Revocation of Keys (Kerberos, SSH, X509, ...)
– Policies (Access control, authorization rules)

● Additionally
● Other “security” related aspects of networking

Centralize or distribute ?

● Striking the right balance is not an easy task
● Being able to flexibly shift balance between centralization and

distribution based on the situation is nice, but also harder to
implement in practice.

● This is a problem on multiple levels
● Networking

– How to spread services to avoid single points of failure ?
– Distribute heavily ?

● Security
– How do we reduce attack surface ?
– Centralize heavily ?

● Administration
– How can we allow delegation of tasks securely ?

Pros and Cons of Centralization

● Centralization is good because ...
● Management is easier
● Reporting is easier
● Enforcement is easier
● Development is easier

● ... on the other hand, distributing makes it ...
● More resilient to failure
● Scales better

Responsibilities of an IdM server ...

● Authentication for users and services
● Passwords, SSO ? 2FA ?
● Certificates, Keys

● Authorization rules for all services
● Access rules per host
● Users roles and admin delegation

● Network related administration ?
● DNS, DHCP, ...

● Auditing and reporting

... and of the clients

● Retrieving Information
● Users, Groups, netgroups, host groups, roles
● Certificates, keytabs
● Automount maps, other configuration

● Authentication
● Passwords, tickets

● Authorization
● HBAC, sudo rules, SSH keys, SELinux users

● Misc
● DNS discovery, DNS Updates, time synchronization

There is a lot to manage

● Management tools are as important as the underlying
technologies used
● If it can't be managed effectively, it can't be used
● Sadly management is very often overlooked in Free Software

● Security and Complexity are enemies
● Complex interfaces need to be simplified to make them

understandable to users

● Diagnostic tools are also important
● Complex systems tend to break more easily

● Keep it simple if you can
● If you can't, make it manageable at least

So, how hard can it be ?

● We just need to install an LDAP server and a
Kerberos KDC right ?
● Have you ever tried ? :-)

● Some numbers from the FreeIPA project
● Installer: 4(NTP) + 35(DS) + 20(PKI) + 12(KDC) +

16(HTTPD) + 9(DNS) = 96 unique steps
– This includes no replica, no clients, and only default rules
– Time taken: approx. 5 minutes

● Code: ~150k lines on top of existing projects

Basic Idm exploded (FreeIPA)

LDAP

HTTPD

DNSNTPD

CA

SSSD

KDCKDC
Kadmin Client

Admin

Server

Why LDAP and Kerberos ?

● Why not a Custom (SQL?) Database ?
● Integration, custom database = custom clients
● Multi-master and read-only Replication
● Fine grained Access Control
● Interoperability, Standard

● Why LDAP is not enough ? Why Kerberos ?
● Security: Passwords vs tickets vs certificates
● Convenience: Single Sign On
● Performance: Scalability, Availability
● Security, Standard

Why PKI, DNS integration ?

● Some protocols can be secured only via SSL
● HTTP, IMAP, SMTP, ..., VPN, ...
● Central Authority for X509 certificates is a good idea

● DNS is crucial to identify machines
● Service principals use DNS names
● X509 Certificates use DNS names
● SSH identify targets via DNS names
● IPv6 is coming, very long addresses
● But DNS is Insecure!

– DNSSEC
– (GSS-)TSIG DNS updates

Other services ...

● NTP
● Time is critical for almost everything

– Infamous krb5 clock-skew
– Certificate validity
– Log correlation

● More ...
● DHCP
● Radius
● Telephony
● ...

Management Interface

● A complete Management Interface is a
fundamental component of an Idm system

● Adding Network APIs makes life easier for 3 rd
parties. Although CLI tools are often sufficient
for small integration tasks.

● Although not mandatory, a graphical interface,
such as a Web UI, will make the system usable
by a much larger number of people.
● Helpdesk, Managers, ...

FreeIPA management UI

On the client

● A system is as secure as the weakest link
● The client capabilities define what can be done

So ...
● Classic Linux client

– nss_ldap & co generally use no authentication
– Key management is manual , prone to errors
– Laptops are hard to integrate, poor offline support
– Access control and sudo rules difficult to manage

An improved client

● SSSD was spun off the FreeIPA project
● Single authenticated server connection
● Caching of identity and other information
● Offline authentication
● HBAC, sudo rules, selinux users, SSH keys
● Server affinity and DNS updates

● Additional features
● Certificate renewal (certmonger)
● Privilege separation (gss-proxy)

Building an Idm system is hard

● It is more of a process than a product
● Installing the bits is just the first step
● An IdM system must make things easier to manage
● A management interface is fundamental, even just CLI
● Homegrown may be sufficient, but it is a very big effort

● Reuse as many components as you can
● Choose wisely, changing components later is harder
● Look around you, others have already done this.

See what they've done and ask yourself why and if the same
reasoning applies to your case

Beyond Linux

● FreeIPA has recently added support for creating
trust relationships with Active Directory

SSSD

Server

KDC

Samba
RPC

KDCDNS

IPA Server

KDCDS

DNS

MS-RPC

KDCKDC

AD Server

KDCLDAP

Krb Credentials

Client (Windows/Linux)

Questions ?

Thanks to:

Simo Sorce simo@redhat.com

 http://freeipa.org

mailto:simo@redhat.com

Bonus slide

● Acronyms & terminology

SSO: single Sign On

2FA: Two-Factor Authentication

HBAC: Host Based Access
Control

KDC: Key Distribution Center

Principal: Name of Identities in the
Kerberos world

X509: Encoding standard for SSL
certificates

CA: Certificate Authority, Signs
certificates in a PKI system

PKI: Public Key Infrastructure

● Additional links

SSSD: http://fedorahosted.org/sssd

Gss-Proxy:
http://fedorahosted/gss-proxy

Certmonger:
https://fedorahosted.org/certmonger/

Bind-dyndb-ldap:
https://fedorahosted.org/bind-dyndb-
ldap/

389 DS: http://port389.org

Dogtag: http://pki.fedoraproject.org

MIT Kerberos:
http://web.mit.edu/kerberos/

http://fedorahosted.org/sssd
http://fedorahosted/gss-proxy
https://fedorahosted.org/certmonger/
http://port389.org/
http://pki.fedoraproject.org/
http://web.mit.edu/kerberos/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

